Planets Around Nearby Stars

Paul Butler
Carnegie Institute of Washington


2268th Meeting Abstract
Friday, April 16, 2010 at 8:15 PM

Paul Butler

Abstract:

Prior to the discovery of extrasolar planets it was widely thought that all planetary systems around other stars would look like our own solar system, with rocky planets in close, gas giants further out, all in beautifully nested concentric, circular orbits. Over the past 15 years the number of known planetary systems has increased from one, our own Solar System, to more than 400. Soon it will be more than four thousand. Characterization to date of these systems has highlighted the paucity of human imagination. A multitude of planetary architectures have been discovered - previously unimagined by astrophysicists and science fiction writers. Our own Solar System now looks like an oddball. Discoveries over the next decade will include Solar System analogs and the first cache of potentially habitable planets around nearby stars.

About the Author:

Paul Butler is a Staff Scientist at the Department of Terrestrial Magnetism of the Carnegie Institution of Washington. Previously, he has served as a Staff Astronomer at the Anglo-Australian Observatory in Sydney Australia and as a Research Fellow at UC Berkeley. He received his PhD from the University of Maryland.

His work has focused on improving the precision of Doppler velocity measurements of Sun-like stars. Over the past two decades his systems have improved precision from 300 meters/sec to 1 meter/sec, and have resulted in the discovery of about half of all known extrasolar planets.

Butler has been widely recognized for his work. He received the inaugural Bioastronomy Medal from the International Astronomical Union, and the Henry Draper Medal from the National Academy of Sciences. Newsweek named him one of the “100 Americans for the Next Century”. Discover Magazine named him Space Scientist of the Year in 2003, and ABC News has named him “Person of the Week.”


←Previous Abstract - Directory of Archived Meetings - Next Abstract→
Home