Thermoelectrics for Vehicles

John Fairbanks
US Department of Energy

2259th Meeting Abstract
Friday, October 30, 2009 at 8:15 PM

John Fairbanks


Thermoelectrics directly convert heat to electricity. If an electrical current is applied to these semiconductor devices, heat can be pumped in either direction depending on the polarity of the current. The efficiency of these devices is related to the electrical current divided by the thermal conductivity. According to the Weidmann-Franz relationship, these two parameters are in lockstep as a function of temperature for most materials. In the mid 1990’s, Prof. Mildred Dresselhaus at M.I.T. analytically proposed a nanoscale approach for what she calls “low dimensional materials,” which allows electrical current to flow while the thermal conductivity is reduced by phonon scattering through the increased number of grain boundaries in those materials. During the same time frame, NASA-JPL was experimenting with face-centered cubic materials called Skutterudites having six filled and two unfilled cages in the atomic structure. Large atoms are forced into the empty cages which dissipate thermal energy by “rattling”.

The Department of Energy (DOE) initiated a project 18 years ago to develop a vehicular Thermoelectric Generator (TEG) to convert engine waste heat directly to electricity. DOE began testing TEG on heavily loaded heavy-duty diesel trucks at the PACCAR test track for the equivalence of 550,000 miles. In the DOE program, vehicular production prototype TEGs were developed for BMW, Ford and GM cars and heavy duty trucks. These TEGs have been designed and fabricated and are now undergoing testing. They may provide significant improvements in fuel economy. Their initial commercial introduction is expected to take place in 2012-2013, followed by market entry in much larger numbers in the following years in vehicles from BMW, GM and Ford. This year, DOE is initiating an automotive Thermoelectric Heating, Ventilation and Air Conditioning (TE-HVAC) system which will maintain single occupant comfort using only 630 Watts of energy, compared to the 3,000 to 4,500 Watts required by current commercial air conditioners for vehicles.

About the Author:

John Fairbanks earned engineering degrees from the Maine Maritime Academy, Stanford University, and the University of Santa Clara; and has done Post Graduate studies at Rice University and Johns Hopkins University. He served three years of active duty in the Navy, did two tours on the USS Montrose in WestPac and one year as an Instructor in the Officer’s Damage Control School, Treasure Island, San Francisco. At Hiller Aircraft, he worked on V/STOL technology, principally the Detached Coanda Effect, and designed bearing and gear box test stands for the XC-142A Tilt Wing Aircraft. He went to Philco-Ford in 1963 to design a Brayton Cycle power system for a solar approach mission which evolved to a thermally controlled photovoltaic design. He developed an optical coating program for thermal control of solar cell performance. He did spacecraft heat transfer design using thermoelectrics to maintain thermal levels in spacecraft electronics. He taught Mechanical Engineering courses (Thermodynamics, Dynamics, and Fluid Mechanics) at the Maritime Academy branch of Texas A&M.

At NASA-Goddard Spaceflight Center, he designed spacecraft solar arrays for four types of spacecrafts. He was the Power System Manager for the Orbiting Astronomical Observatory (OAO), the largest unmanned spacecraft at the time. He transferred to the Naval Ship Engineering Center in 1971 to become Program Engineer on the FT-9, a marinized version of the JT-9D aircraft gas turbine engine, which powers the 747s. He was Program Manager of the Ceramic Gas Turbine Demonstrator Program with Garrett AiResearch and managed the gas turbine materials program. He organized the first 3-Gas Turbine Materials in a Marine Environment Conferences.

He moved to the Department of Energy in 1977 to work on stationary power gas turbine components developed from aircraft gas turbine engine technology. He developed the Combustion Zone Durability Program to enable diesel and gas turbine engines to operate on low quality petroleum and coal derived liquid fuels. This program concentrated on coatings, primarily thermal barrier coatings. He coordinated the test and evaluation of coal derived liquid fuels in diesel engines He was Program Manager for the Low Emission – 55 Per Cent Efficient (LE-55) diesel engines for Class 7 & 8 heavy duty trucks. He initiated and has served as the Chair for the series of Diesel Engine Efficiency and Emissions Research (DEER) Conferences. The 15th conference in that series was recently held in August 2009 in Dearborn, Michigan. In 1997, he initiated the Light Truck Clean Diesel Engine Program to develop commercially viable diesel engines for sports utility vehicles, mini-vans and pick-up trucks. In 1994, his program began to develop and test thermoelectric generators on vehicles. More recently, he has organized and is managing major programs to develop and commercially introduce Thermoelectric Generators for transportation applications. Currently, his program is initiating projects to develop TE-HVAC which can significantly improve fuel economy.

Mr. Fairbanks has authored or co-authored 104 technical papers. Two of his papers won the John C. Neidermayer award for the best technical paper presented at Association of Scientists and Engineers (ASE) [NAVSEA] Conferences. He is a Past Chairman of the American Society of Mechanical Engineers (ASME) – Washington Section, and received the ASME Distinguished Service Award. He was elected Vice President of the Stephen Decatur Chapter of the Naval Reserve Association. In 1975, he won the Outstanding Alumni Award – Maine Maritime Academy. While at the NASA-Goddard Spaceflight Center, he was awarded the Apollo Achievement Award. He was elected Chairman of the Department of Energy’s Material Coordinating Committee in 1981. In 1984, he organized the US participation in the First NATO Workshop – Coatings for Heat Engines. On July 2, 2008, he delivered the Plenary Presentation for the European Conference on Thermoelectrics in Paris. He gave an invited presentation at the 12th Global Powertrain Conference at the University of Chicago on October 14-15, 2008. Recently, he made a presentation at the MIT-NESCAUM New Directions in Energy Policy and Impacts on Air Quality Symposium, Dedham, MA, August 11-12, 2009. Mr. Fairbanks was a Plenary Speaker at the International Thermoelectric Conference (ITC) 2009 in Freiburg, Germany. He holds a USCG issued 1st Assistant Engineer’s License. He is a Captain in the US Navy Reserve (Ret) and was the Commanding Officer of six Naval Reserve Units.

←Previous Abstract - Directory of Archived Meetings - Next Abstract→