Philosophical Society of Washington

Dynamic Data Driven Application Systems

Frederica Darema
National Science Foundation

2161st Meeting Abstract
Friday, April 4, 2003 at 8:15 PM


Dynamic Data Driven Application Systems (DDDAS) is a new paradigm for application simulations that can accept and respond dynamically to new data injected at execution time; conversely, such application systems will have the ability to dynamically control the measurement processes. The synergistic feedback control-loop between simulations and measurements can open new domains in the capabilities of simulations with high potential pay-off, create applications with new and enhanced analysis and prediction capabilities and enable a new methodology for more efficient and effective measurement processes. This new paradigm has the potential to transform the way science and engineering are done, and induce a major impact in the way many functions in our society are conducted, such as manufacturing, commerce, transportation, hazard prediction/management, and medicine. The presentation will discuss the opportunities, the challenges, and will provide examples of applications and ongoing research to enable such capabilities.

About the Author:

Frederica Darema is the Senior Science and Technology Advisor at EIA and the National Science Foundation's Computer & Information Science & Engineering Directorate, and Director of the Next Generation Software (NGS) and Biological Information Technology & Systems (BITS) Programs. She received her BS degree from the School of Physics and Mathematics of the University of Athens - Greece, and MS and Ph. D. degrees in Theoretical Nuclear Physics from the Illinois Institute of Technology and the University of California at Davis, respectively, where she attended as a Fulbright Scholar and a Distinguished Scholar. After Physics Research Associate positions at the University of Pittsburgh and Brookhaven National Lab, she received an APS Industrial Fellowship and became a Technical Staff Member in the Nuclear Sciences Department at Schlumberger-Doll Research. Subsequently, in 1982, she joined the IBM T. J. Watson Research Center as a Research Staff Member in the Computer Sciences Department and later-on she established and became the manager of a research group at IBM Research on parallel applications. In 1984, she proposed the SPMD (Single-Program-Multiple-Data) computational model that has become the popular model for programming today's parallel and distributed computers. She has been at NSF since 1994, where she has developed the DDDAS paradigm, and is pushing for research in the interface of neurobiology and computing. She is also involved in cross-directorate probrams for Nanotechnolgy Science and Engineering, and the Scalable Enterprise Systems. During 1996-1998 she completed a two-year assignment at DARPA where she initiated a new thrust for research on methods and technology for performance engineered systems.

<—Previous Abstract - Meeting Archive - Next Abstract—>