Philosophical Society of Washington

Chirality and Molecular Order

Jonathan Selinger
Naval Research Laboratory

2142nd Meeting Abstract
Friday, February 22, 2002 at 8:15 PM


The importance of chirality, or molecular handedness, has long been recognized in many areas of physics and chemistry. It is well known, for example, that the interactions between chiral molecules change dramatically when one molecule is replaced by its mirror image. This chiral specificity is the basis of a major industry producing chiral drugs. In recent years, researchers have found that chirality also plays other roles—controlling the structure of liquid-crystal phases and the shape of self-assembled supramolecular aggregates. In this talk, we discuss these effects of chirality. We review the wide range of ordered liquid-crystal phases induced by chirality, and consider their significance for liquid-crystal displays. We then present work on self-assembled lipid microstructures developed at the Naval Research Laboratory, and discuss the importance of chirality for these structures. Our overall conclusion is that the concept of chiral order provides one approach for understanding and controlling the structure of materials.

About the Author:

Jonathan V. Selinger has been a research physicist at the Naval Research Laboratory Center for Bio/Molecular Science and Engineering. Previously, he held research positions at the University of California, Los Angeles and California Institute of Technology. He received a doctorate in physics from Harvard university in 1989, after having received an A.B. Summa Cum Laude and A.M. from the same institution. He is the author of numerous papers regarding chirality and liquid crystal structure.

- Historical Index - Home -